Answer:
Option C
Explanation:
Rearranging the equation, we have
dx - ydy + $\sqrt{(x^{2}+y^{2})}(xdx+ydy) = 0$
$dx - ydy+\frac{1}{2}\sqrt{(x^{2}+y^{2})}d(x^{2}+y^{2}) = 0$
On integrating, we get
$x-\frac{y^{2}}{2}+\frac{1}{2}\int_{}^{}\sqrt{t}dt = C$
$\left\{t =\sqrt{x^{2}+y^{2}}\right\}$
or $x-\frac{y^{2}}{2}+\frac{1}{3}(x^{2}+y^{2})^{3/2}$=C